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Convincing evidence exists that a variety of
pollutants, some of which can disrupt
endocrine development in wildlife and lab-
oratory animals, is found in rain water,
well water, lakes, and oceans, as well as
freshwater, marine, and terrestrial food
products. This paper identifies the need for
a greater awareness about the long-term
health consequences associated with expo-
sure to endocrine-disrupting chemicals
during early life. Endocrine-disrupting
effects are not currently considered in
assessing risks to humans, domestic ani-
mals, and wildlife. Taking into considera-
tion what is currently known about chemi-
cals that disrupt the endocrine system, the
effects 1) may be manifested in an entirely
different way, and with permanent conse-
quences, in the early embryo, fetus, and
neonate from effects as a result of exposure
only in adulthood; 2) can change the
course of development and potential of
offspring, with the outcome depending on
the specific developmental period(s) of
exposure; and 3) are often delayed and
thus may not be fully or obviously ex-
pressed until the offspring reaches maturity
or even middle age, even though critical

exposure occurred during early embryonic,
fetal, or neonatal life.

In mammals as well as all other verte-
brates, communication among cells is
required for development to progress nor-
mally. Substances produced by one group
of cells can direct the course of develop-
ment and thus determine the future func-
tioning of another group of cells (1). For
example, a group of compounds, the steroid
hormones produced by the mother's ovaries
and adrenal glands, the placenta, and the
fetal gonads and adrenal glands, has been
identified as playing a major role in regulat-
ing developmental processes in many tissues
(2). Organogenesis, a particularly vulnerable
stage of development, begins in humans at
the end of the second month of gestation.
At this time the course of development of
many tissues is regulated by endogenous
steroid hormones along with other endo-
crine and paracrine factors (3).

It is now recognized that numerous
endocrine-disrupting chemicals have been
released into the environment in large
quantities since World War II (Table 1).
Some of these chemicals bind to intracellu-
lar receptor proteins for steroid hormones
(4) and evoke hormonal effects in animals
(5), humans (6), and cell culture (7,8).
They thus interfere with the functioning of
receptors whose normal role is to mediate
the effects of the endogenous steroid hor-
mones (9). Laboratory experiments have
demonstrated that exposure of fetuses to
endocrine-disrupting chemicals can pro-
foundly disturb organ differentiation
(10,11) because they can act as hormone
agonists or antagonists. Organs that appear
to be at particular risk for developmental
abnormalities in offspring because of
maternal exposure are those with receptors
for gonadal hormones: in female fetuses
this includes the mammary glands, fallopi-
an tubes, uterus, cervix, and vagina, and in
male fetuses it includes the prostate, semi-
nal vesicles, epididymides, and testes. In
both sexes the external genitalia, brain,
skeleton, thyroid, liver, kidney, and im-
mune system are also targets for steroid
hormone action and are thus potential tar-
gets for endocrine-disrupting chemicals,
although these chemicals may have multi-
ple modes of action, in addition to acting
as hormone agonists and antagonists, in
different target tissues (11-15).

A major concern is the profound and
permanent effects that exposure to endo-
crine disruptors during critical periods in
development can have on the future well-
being of wildlife and humans, although
chronic exposure after maturity can also
present a health risk. It is generally as-
sumed that after maturity, exposure to
endocrine disruptors does not permanently
alter the functioning of hormone-respon-
sive tissues. However, experimental studies
in animals have shown permanent changes
in brain (16) and vaginal epithelium (17)
in females and prostate in males (18) after
administration of estrogenic chemicals in
adulthood. The possibility thus exists that
chronic, low-level exposure to estrogenic
chemicals in the environment after maturi-
ty can have effects in humans similar to
those observed in laboratory animals
administered estrogen (19t).

Wildlife
Exposure to endocrine-disrupting chemi-
cals in the environment has been associated
with abnormal thyroid function in birds
(20) and fish (21); decreased fertility in
birds (22), fish (23), shellfish (24), and
mammals (25); decreased hatching success
in fish (26), birds (27), and turtles (28);
demasculinization and feminization of
male fish (29), birds (30), and mammals
(31); defeminization and masculinization
of female fish (32), gastropods (33), and
birds (30); and alteration of immune func-
tion in birds (34) and mammals (35).
These deleterious health effects have been
observed in many areas where the presence
of multiple man-made chemicals, such as
byproducts of industrial chemical synthesis
(chemical waste) and pesticides (36), has
been established. The effects were not
reported before the 1950s and are current-
ly observed in many areas, such as the
Great Lakes in North America. Although
much of the data presented here is from
studies conducted in and around the Great
Lakes, it is important to note that the level
of contamination in the Great Lakes region
is no greater than some of the other major
drainage basins in the United States (37.

Researchers from Guelph University
report a 100% prevalence of thyroid
enlargement in 2-4-year-old salmon in the
Great Lakes. Moreover, in some Great
Lakes salmon stocks, there is an extremely
high prevalence of precocious sexual matu-
ration in males (40-80% depending on the
year), poor egg survival (<15%), and low
egg thyroid hormone content (23). Mul-
tiple abnormalities, including behavioral
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changes, reproductive loss, and early mor-
tality in offspring have been documented
in bird species that feed on Great Lakes
fish (38). Reproductive loss and early mor-
tality have also been observed in offspring
of confined mink that were fed Great
Lakes fish (39).

The devastating effect of DDT on
embryonic survival in bald eagles due to
eggshell thinning and cracking has been
known for some time (40). DDT was
introduced on a large scale into the envi-
ronment in the early 1940s. Restrictions
on the use of DDT since 1972 have been
only partially successful in reducing levels
in the Great Lakes (36). Monitoring nest-
ing sites along the Great Lakes shoreline
indicates that while eggshell thinning has
abated, embryonic and chick survival is not
adequate to maintain stable populations.
Recruitment is from inland populations
that responded to the restrictions on DDT
and other chemicals and that do not
depend on contaminated fish in the Great
Lakes as a primary food source. However,
adult bald eagles that migrate to the shore-
line have difficulty producing viable off-
spring after consuming fish and other food
from the Great Lakes for 2 or more years
(36). The shoreline has thus become a
"black hole" for bald eagles that migrate
from successful inland populations. Aban-
doned eggs hold as much as 10 times the
critical concentration of DDT below
which stable populations of bald eagles can
be maintained (41). In addition to DDT,
bald eagles carry elevated concentrations of
other compounds that are known endo-
crine disruptors, such as chlordane, dield-
rin, and polychlorinated biphenyls (PCBs)
(41). Similar findings have been reported
for bald eagles nesting along the Columbia
River in Washington State (42).

There are several explanations for the
continued elevated concentrations of
endocrine-disrupting chemicals in wildlife
tissues and the associated instability in
wildlife populations, despite the fact that
some of the chemicals have been regulated.
First, many pesticides, such as DDT, are
still manufactured abroad and used exten-
sively in developing countries where there
are limited safeguards or monitoring of
use. There is now evidence that DDT,
PCBs, and other chemicals that readily
vaporize are being transported long dis-
tances over the globe via the atmosphere
(43,44). For example, it is estimated that
90% of the PCBs entering Lake Superior,
the largest of the Great Lakes, is derived
from the atmosphere (36). Second, some
chemicals are very persistent: DDT has a
half-life of 57.5 years in temperate soils
(45). PCBs were introduced in 1929, and
production ceased in the United States in
1972. Many PCB residues which are

Table 1. Chemicals with widespread distribution
in the environment reported to have reproductive
and endocrine-disrupting effects

Chemical Reference

Pesticides
Herbicides

2,4-D
2,4,5-T
Alachlor
Amitrole
Atrazine
Metribuzin
Nitrofen
Trifluralin

Fungicides
Benomyl
Hexachlorobenzene
Mancozeb
Maneb
Metiram-complex
Tributyl tin
Zineb
Ziram

Insecticides
B-HCH
Carbaryl
Chlordane
Dicofol
Dieldrin
DDT and metabolites
Endosulfan

Heptachlor and H-epoxide
Lindane (yHCH)
Methomyl
Methoxychlor
Mirex

Oxychlordane
Parathion
Synthetic pyrethroids
Toxaphene

Transnonachlor

Nematocides
Aldicarb
DBCP

Industrial chemicals
Cadmium
Dioxin (2,3,7,8-TCDD)
Lead
Mercury
PBBs
PCBs
Pentachlorophenol (PCP)
Penta- to nonylphenols
Phthalates
Styrenes

(98,99)
(100)
(99,101)
(102,103)
(104-106)
(107)
(10)
(108,109)

(110)
(111-114)
(108)
(115,116)
(117)
(118,119)
(116)
(99)

(120)
(100)
(121)
(30)
(113)
(30)
(122;A. Soto,
unpublished)
(113)
(123)
(107)
(5,124)
(A. Soto,
unpublished)
(121)
(125)
(126)
(A. Soto,
unpublished)
(121)

(107)
(10,99)

(127)
(85-87)
(128,129)
(130)
(131)
(72,132,133)
(134)
(8)
(135-140)
(8,141,142)

endocrine disrupting and/or developmen-
tal toxicants have not been properly stored
and are already dispersed in the environ-
ment. PCBs will be around over geologic
time (46).

Effects of pollutants on the reproduc-
tive system, in addition to the well-docu-
mented reduction in eggshell thickness,
became apparent in the late 1970s when
histopathological examination of herring-

gull embryos and newly hatched chicks
collected in Lake Ontario revealed oviducts
and gonads resembling ovaries in male
birds and abnormal development of the
oviductal system in female birds (38).
Follow-up laboratory studies using DDT
and other pesticides which remain in wide
use today (dicofol, kelthane, and methoxy-
chlor) produced the same results in kes-
trels, western gulls, and California gulls
(30,44. Today, adult female herring gulls
have been observed tending double clutch-
es in their nests in unstable populations
(38). Elevated concentrations of DDT, its
metabolite, DDE, PCBs, and other or-
ganochlorine residues have been found in
eggs from these populations (48). It has
not been determined whether half of the
birds that are pairing are genotypic males
that had been feminized during embryonic
development by environmental chemicals
with estrogenic activity or whether they
were all genotypic females showing abnor-
mal behavior. Recent laboratory experi-
ments with small mammals corroborate
many of the anomalies cited above, al-
though the effects vary among species and
among chemicals (5).

The DES Syndrome: A Model for
Exposure to Estrogenic Chemicals in
the Environment
Diethylstilbestrol (DES) is a synthetic
estrogen that was used by physicians to pre-
vent spontaneous abortions in women from
1948 until 1971, when its use for this pur-
pose was banned. DES-exposed humans
thus serve as a model for exposure during
early life to any estrogenic chemical, indud-
ing pollutants in the environment that are
estrogen agonists. The primary model for
determining estrogenic activity of a chemi-
cal is the stimulation of mitotic activity in
the tissues of the female genital tract in
early ontogeny, during puberty, and in the
adult (49), although estrogen also affects
other tissues in females and males (2,19).
Daughters whose mothers took DES (about
1 million or more between 1960 and 1970)
suffer reproductive organ dysfunction,
abnormal pregnancies, a reduction in fertil-
ity, immune system disorders, and periods
of depression (50,51). As young adults
these women also suffer increased rates of
vaginal clear-cell adenocarcinomas (52);
this is a reproductive tract cancer found in
women beginning in their fifties, but it is
rare in women in their twenties (50,51). A
major concern is that when women ex-
posed in utero to estrogenic chemicals (DES
and/or environmental pollutants that are
estrogen agonists) reach the age at which
the incidence of reproductive organ cancers
normally increases, they will show a much
higher incidence of cancer than unexposed
individuals.
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There is a substantial literature docu-
menting the detrimental effects of exposure
to DES during the critical period of organ
differentiation in experimental studies
using rodents. Animal models corroborate
clinical studies in humans. For example,
dysplastic changes in the rodent prostate
(53) are comparable to those seen in still-
born male offspring ofwomen treated with
DES (54). In female mice, DES exposure
during early life leads to permanent corni-
fication of the vaginal epithelium, which
may be independent of effects on the
brain-pituitary-ovarian axis (50,55,56).
Significant impairment of immune func-
tion (particularly the T-cell system) has
also been reported after exposure to DES
during early life (57 as well as an increase
in autoimmune diseases in women (58).
These outcomes were typically not notice-
able at birth and often not detected before
maturity. For example, treatment of male
rats with DES during the first month after
birth [accessory reproductive organs are
still developing (2)] did not result in
observable malignancies at 6-9 months of
age, but by 20 months (old age), squamous
cell cancer was detected with involvement
of the dorsolateral prostate (59). In female
mice treated during early life with DES, an
increase in sensitivity of mammary glands
to carcinogens has been reported (60).

A variety of agricultural and industrial
chemicals produced today (either within or
outside the United States) are capable of
binding to intracellular estrogen receptors
either directly, such as o,p'-DDT (61), or
after in situ conversion to an active me-
tabolite. For example, the pesticide metho-
xychlor (62) is demethylated in situ to a
more estrogenic bisphenolic compound
(63). Pesticides such as o,p'-DDT, chlor-
decone (6), and components of plastics,
such as nonylphenol (7), mimic the action
of endogenous estrogens (and exogenous
DES) both in laboratory animal models as
well as in estrogen-sensitive cells in culture
(8). A number of conditions in wildlife
(reviewed earlier) parallel those reported in
laboratory animals and humans exposed to
DES during development.

It is worth noting that the estrogenicity
of chlordecone was first detected in people
working at a pesticide-producing plant
(64), and although many effects of estro-
genic chemicals may be primarily due to
exposure during in utero development,
chronic exposure throughout adulthood is
also a concern. For example, in studies
with male dogs, which show prostatic
hyperplasia during aging, the disease only
developed in castrated males treated with
both androgen and estrogen, not androgen
alone (18). Exposure of adult men to estro-
gen has been implicated in the etiology of
prostate hyperplasia (19,65). Both prostate

cancer and benign prostatic hyperplasia in
men and cancers of estrogen-responsive tis-
sues in women (vaginal, cervical, endome-
trial, and breast) represent major medical
problems faced by older people.

It is now suspected that increases in the
incidence of numerous pathologies in men
and women may be related to exposure to
pesticides and other endocrine-disrupting
chemicals that can mimic DES and are
thus estrogen agonists. The clinical and
experimental findings with DES show that
consideration must be given to the follow-
ing facts: 1) an increase in breast and pro-
static cancer in the United States occurred
between 1969 and 1986 (66), 2) a 400%
increase in ectopic pregnancies occurred in
the United States between 1970 and 1987
(67), 3) a doubling of the incidence of
cryptorchidism occurred in the United
Kingdom between 1970 and 1987 (68,69),
and 4) an approximate 50% decrease in
sperm count worldwide over the last 50
years (70).These trends may be a reflection
of the increase from estrogenic pollutants
in the environment. It has been suggested
that the decrease in sperm count in men is
the result of exposure during the fetal peri-
od of testicular differentiation to pollutants
that have estrogenic activity (71). For
example, an association between reduced
sperm motility and PCBs in men with fer-
tility problems has been reported (72);
some PCBs are directly estrogenic while
others become estrogenic after in vivo con-
version, although the binding affinity of
estrogen receptors for estrogenic PCBs is
lower than that for estradiol- 1 7f (4).

Characterization of Endocrine-
Disrupting Chemicals
Literally thousands of synthetic com-
pounds, a number of which are endocrine
disruptors, have been released in the envi-
ronment, generating concern about their
additive and synergistic effects. Also, many
of the endocrine disruptors are persistent,
lipophilic, and have low vapor pressures,
which facilitates their widespread dispersal.

It is common to find PCBs, dioxins,
DDT, and a number of other organochlo-
rine pesticides together in human breast
milk and adipose tissue (73,74). Of con-
cern for humans, domestic animals, and
wildlife are the likely additive effects due to
exposure to these and other endocrine-dis-
rupting chemicals either together or at dif-
ferent times in life. For example, possible
exposure to multiple estrogenic chemicals
may be related to the fact that not all off-
spring of DES-exposed mothers show
abnormalities. Although genetic factors
may partially account for this outcome, it
is also possible that the most affected indi-
viduals are those whose mothers were
exposed to endocrine-disrupting environ-

mental pollutants with estrogenic activity
before or during treatment with DES.
Many of the effects of endocrine disruptors
that have been reported in wildlife are
associated with the presence of a toxic con-
taminant in the mother due to exposure
before egg production in birds and fish or
pregnancy and lactation in mammals.

Evidence already exists that a number
of organochlorine chemicals (such as diox-
in, PCBs, and DDT) has reached concen-
trations in aquatic food sources that can
lead to substantial functional deficits in
animals that consume this food. Male rats
fed Lake Ontario fish showed hyperreactiv-
ity to stress, and offspring of females fed
Lake Ontario fish during pregnancy also
expressed the same hyperreactive condi-
tion, although the offspring were never fed
fish (75). In addition, offspring of women
who ate two to three Lake Michigan fish a
month for at least 6 years preceding their
pregnancies were slightly preterm, had
lower birth weight, smaller skull circumfer-
ence, and cognitive, motor (hypotonicity
and hyporeflexivity), and behavioral def-
icits at birth compared with offspring
whose mothers did not eat fish (76). The
effects were associated with the mothers'
lifetime experience of eating fish, not just
what they ate during pregnancy. These
findings emphasize the importance of
exposure of females to contaminants before
pregnancy in terms of effects on their off-
spring.

Subsequent studies of the above cohort
beginning at 6-7 months revealed delays
in psychomotor development and poorer
visual recognition compared with controls
(77. When examined at 4 years of age, the
children of women who had eaten fish in
this study exhibited short-term memory
problems, and 17 of the children became
intractable and refused to cooperate during
testing; they were the children of the
mothers with the highest PCB concentra-
tions (measured in their breast milk) in the
study (78). The childrens' intractable
behavior appears to be analogous to the
behavior of the rats fed Lake Ontario fish.
In another study using the infants of
mothers who ate Lake Michigan fish and
infants of mothers exposed to a PCB "farm
incident," both cohorts experienced growth
retardation and neurological effects which
were related in a dose-dependent manner
to umbilical cord serum PCB concentra-
tions (reflecting the levels in fetal blood)
(79). It remains to be determined whether
the neurotoxic effects mentioned above are
mediated through the endocrine system. It
is recognized that endocrine-disrupting
chemicals may act via multiple mecha-
nisms, some of which may only operate
during specific developmental periods
(11,80,81).
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Based on current breast milk concen-
trations nationwide, it is estimated that at
least 5% and possibly more of the babies
born in the United States are exposed to
quantities of PCBs sufficient to cause neu-
rological effects (82). These findings pro-
vide evidence that contemporary PCB
exposure is above "any regulatory guide-
line" (82. 247). The possible immunologi-
cal and endocrinological consequences
remain to be determined in these cohorts.
A major concern is that some of these con-
sequences may not become apparent until
young adulthood or even middle age.

Accumulation of pollutants increases
the probability of repeated or constant
exposure but, as the literature on dioxin
shows, administration at only one time in
development, rather than the more likely
chronic exposure, can profoundly affect
the embryo, fetus, or perinatal infant.
Ample evidence exists from both in vivo
and in vitro studies that dioxin can antago-
nize the action of estrogen in some estro-
gen target cells (83,84), although this effect
does not appear to be due to dioxin bind-
ing to estrogen receptors (11). The fact
that dioxin is antiestrogenic is important
because the conversion of androgen to
estrogen in some target cells plays a critical
role in masculinization (2). For example, a
series of studies describing the dose-related
inhibition (dose range: 0.064-1.0 pg/kg!
body weight to the dam) of masculiniza-
tion and persistence of feminine traits in
male rat offspring whose dams were fed
one meal of dioxin during pregnancy at a
critical period during sexual differentiation
illustrates the vulnerability of the male rat
fetus in utero to administration of only one
low dose of dioxin to the dam. In these
studies the effects were not fully manifest-
ed until the rats reached adulthood (85-84.
These effects would be expected from
either chronic, low-dose exposure to dioxin
before pregnancy or to a single exposure
during a critical time in pregnancy.

Dioxin accumulates in human tissue and
is generally found in all tissues of people liv-
ing in developed countries (88). However,
only the toxic congeners of the dioxin family
complex bioaccumulate in human breast
milk (88). Similarly, these chemicals have
also been found in follicular fluid obtained
during in vitro fertilization procedures in
women (89). Although direct correlations
have not yet been reported between repro-
ductive success and the presence of xenobi-
otics in the follicle, these substances could
disrupt oocyte development (19,90,91).

Many endocrine-disrupting chemicals
have been reported in the reproductive tis-
sues of men and women (74). These lipid-
soluble compounds appear to sequester in
alt~ fatty tissue in the body, so that organs
and tissues with higher fat content hold

more of the compounds on a wet weight
basis (73). Little is known about the con-
centrations in embryos and fetuses other
than they appear to be similar to those in
mothers (73,92. Of considerable concern
is bioaccumulation of organochlorine
chemicals in breast milk due to its high
lipid content, which leads to a much high-
er concentration in breast milk than in
maternal blood (73). It is well documented
that the infant is exposed to higher con-
centrations of many of these chemicals
during breastfeeding than at any other
time in its life (74).

Consideration should also be given to
the fact that man-made chemicals, such as
DES, which bind to estrogen receptors in
cells, do not bind to estrogen-binding plas-
ma proteins (93). One function of estro-
gen-binding plasma proteins, such as sex-
steroid binding globulin in humans, is to
restrict entry of endogenous estrogen into
cells (94). As a result of this affinity, only a
small fraction of the total endogenous
estrogen in blood is able to pass into cells.
This is particularly important during preg-
nancy when the concentration of estrogen-
binding plasma proteins increases dramati-
cally (2,95). It is possible that estrogenlike
chemicals may show low or no binding
affinity to estrogen-binding plasma pro-
teins. These chemicals may be able to
freely enter cells (similar to DES), which
would greatly increase their biological
activity relative to similar blood concentra-
tions of endogenous estrogen, most of
which is inhibited from entering cells. This
would contribute to the in vivo effective-
ness of these pollutants, many of which
show lower binding affinity to estrogen
receptors than the most potent endogenous
estrogen, estradiol-17fR (4). Environmental
pollutants with estrogenic activity are less
potent agonists for the induction of prolif-
eration of breast cancer cells in vitro (8).

Summary
The deleterious effects of endocrine-dis-
rupting chemicals in the environment on
the reproductive success of wildlife popula-
tions have been documented; this is not an
isolated problem, and today many wildlife
populations are at risk. At present, no
coherent policy has been articulated to
remedy this problem. This is due in part to
the lack of knowledge concerning which of
the many chemicals present in the environ-
ment are responsible for endocrine-dis-
rupting effects. Regulatory agencies should
recognize that the current endpoints of
most tests to assess the risk of pesticides
and other pollutants (carcinogenicity,
acute toxicity, and immediate mutagenici-
ty) have led to the misconception that
these chemicals do not pose a threat to the
health of wildlife, domestic animals, or

humans. Although the effects of mutagens
can be seen immediately in terms of gross
abnormalities, the consequences of fetal
exposure to endocrine-disrupting chemi-
cals would likely not be recognized until
young adulthood, at which time abnormal-
ities, particularly relating to the function of
the reproductive system, become apparent.

Because endocrine-disrupting chemi-
cals are in most cases neither mutagens nor
acute toxicants at ambient concentrations,
they may be released without proper cau-
tion into the environment. This may be
partially remedied by screening for hor-
mone agonistic and antagonistic activity
using hormone-responsive cells in culture;
this procedure identifies compounds that
are endocrine disruptors because they are
hormonally active (8). Although this pro-
cedure cannot rule out chemicals devoid of
hormonal activity that may disrupt devel-
opment through other mechanisms, it can
at least rule out compounds like DDT,
chlordecone, alkylphenols, and some
PCBs, which are estrogen agonists. It is
also essential to continue to examine trans-
generational effects in animal studies
because some pollutants require metabo-
lism in vivo to exert hormonal effects and
because neurobehavioral and other devel-
opmental effects cannot be addressed with
in vitro models (96,97).

Wildlife species have provided the
model for maternal transfer of environ-
mental endocrine-disrupting chemicals
with their resulting suite of effects in off-
spring; experiments with laboratory ani-
mals have confirmed the findings. In
humans, the DES model is clear and trace-
able. However, for clinicians and public
health authorities, the implications of these
findings regarding man-made endocrine
disruptors present in air, water, and food
for human health is just coming to light.
Transgenerational exposure, hormonal
activity, functionality, and delayed expres-
sion of effects must be addressed when
determining the hazards of exposure to
persistent chemicals already in the environ-
ment and of new chemicals that might be
released in the future.
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